4G, 4G+, 3G и LTE — в чем разница стандартов сети

1G

Системы первого поколения (1G, 1981 г.) были аналоговыми, реализованными на достаточно надёжных сетях, но с ограниченной возможностью предложения услуг абонентам. Кроме того, они не позволяли осуществлять роуминг между сетями, т. е. абоненты с одной SIM-картой не могли получать услуги в сетях разных операторов. К системам первого поколения относятся: AMPS и NMT, которые были позднее практически полностью вытеснены стандартом GSM. Минусы — отсутствие безопасности (канал легко прослушивался), трудности с роумингом, малая емкость, большая дальность действия (около 30 км), что в условиях мегаполиса является недостатком, затрудняющим переиспользование частот.

Введение

2G, 3G и 4G – расшифровывается как «второе поколение», «третье поколение» и «четвертое поколение» соответственно.

Буква G в данном случае расшифровывается как «Generation», что и переводится как «поколение».

Все это – наборы стандартов связи. Каждое поколение представляет собой набор стандартов, предназначенных для телефонов и других мультимедийных устройств. Они развиваются параллельно с этими устройствами.

Рис. №1. Устройства, на которых используются 1G, 2G, 3G, 4G и 5G (в будущем)

Так когда телефон поддерживал только голосовое общение, стандарт связи (на тот момент 2G) тоже обеспечивал эту возможность для абонентов.

Когда телефоны стали поддерживать текстовые сообщения, а затем и интернет, стандарты тоже начали обеспечивать эти функции.

На сегодняшний день эти стандарты работают не только для телефонов, а и для планшетов, и других устройств, в которые можно вставить SIM-карту.

Это если по-простонародному, а теперь перейдем к тому, какие же особенности и отличия каждого из этих поколений.

2G

Системы мобильной связи второго поколения (2G, 1991 г.) являются цифровыми. Они привнесли существенные преимущества с точки зрения предложения абонентам усовершенствованных услуг, повышения емкости и качества. Наиболее распространенным стандартом этого поколения является GSM (изначально Groupe Special Mobile, позже переименована в Global System for Mobile Communications — «глобальная система мобильной связи»). Возросшая потребность в беспроводном доступе в Интернет привела к дальнейшему развитию системы 2G. Так появилась система, называемая 2.5G (2000 г.). Примером технологии 2.5G является GPRS (General Packet Radio Services — «пакетная радиосвязь общего пользования») — стандартизованная технология пакетной передачи данных, позволяющая использовать оконечное устройство мобильной связи для доступа в Интернет. Позже была внедрена технология EDGE (Enhanced Data rates for GSM Evolution), что позволило повысить скорость передачи данных до сотен килобит в секунду. Другим появившимся в данном стандарте сервисом является SMS (услуги службы коротких сообщений).

Стандарты 2G на протяжении многих лет были основными при построении систем мобильной связи. Именно GSM дала большой толчок к появлению сетей сотовой связи по всему миру. Однако со временем набор услуг, которые могли предложить стандарты 2G, оказался недостаточным. Кроме того, применяющиеся в данном стандарте технологии передачи данных перестали удовлетворять пользователей сети по скорости.

Оглавление:

  • До «современной эры» — кабельные телефонные сети;
  • Неподъемный уровень цен и отвратительное качество 1G;
  • Мобильные сети 2G в качестве достойной замены «проводам»;
  • Медленная и неуверенная передача пакетных данных в 2,5G;
  • Современный мобильный телефон в качестве окна в интернет с 3G;
  • Быстрее, выше, сильнее — 3,5G в качестве еще одного переходного этапа;
  • Достойная конкуренция оптоволоконным сетям — современный 4G;
  • 5G — недалекое будущее развития мобильной связи.
  • 3G

    Перечисленные выше факторы привели к появлению систем третьего поколения (3G, 1999 г.), которые позволяют осуществлять связь, обмен информацией и предоставлять различные развлекательные услуги, ориентированные на беспроводное оконечное устройство (терминал). Развитие подобных услуг началось уже для систем 2G, но для поддержки этих услуг система должна располагать высокой емкостью и пропускной способностью радиоканалов, а также совместимостью между системами, чтобы предоставлять прозрачный доступ по всему миру. Примером системы 3G является UMTS (Universal Mobile Telecommunications System — «универсальная система мобильной связи»). Данный стандарт позволяет предоставить абонентам скорости передачи данных до 2 Мбит/с. Технология HSDPA (3.5G) дает скорость уже до 14 Мбит/с. Таким образом, пользователи сети могут получать широкий перечень мультимедийных услуг (высококачественное видео, игры, загрузка файлов больших объемов). Однако даже такая скорость передачи данных будет удовлетворять потребности пользователя сети лишь до определенных пределов. В связи с этим началась разработка стандарта четвертого поколения, который позволит снять верхний предел на долгое время.

    Таким образом, менее чем за 30 лет технологии сотовой связи прошли огромный путь. Теперь абонент уже не ощущает географической привязанности и может пользоваться высококачественными телекоммуникационными услугами, где бы он ни находился. Произошло изменение основной идеи, состоялся поворот от сетей для передачи голоса к сетям для передачи данных, а передача голоса стала всего лишь одним из сервисов сети передачи данных.

    Уже в ближайшие пять лет реализация концепции «Интернета сервисов» может превратить рынок сервисов M2M (Machine-to-Machine, межмашинное взаимодействие) из второстепенного для операторов связи в ключевой, каким для них сейчас является рынок голосовых услуг.

    Основные особенности беспроводной сети 3G:

    • С помощью 3G мы можем получить доступ к множеству новых услуг, одна из них – глобальный роуминг. • 3G обладает широкодиапазонным голосовым каналом, благодаря которому цивилизация пришла и в маленькие деревеньки, ведь теперь можно было связываться с другим человеком, находящимся в другой части мира, и даже отправлять ему текстовые сообщения. • 3G даёт очень чистый звук, и вы можете говорить без каких-либо помех. • 3G имеет ряд развлекательных опций: Интернет, мобильное телевидение , видео-конференции, видео-звонки, MMS, игры по сети и многое другое. • 3G сети (UMTS FDD and TDD, CDMA2000 1x EVDO, CDMA2000 3x, TD-SCDMA, Arib WCDMA, EDGE, IMT-2000 DECT) –сотовые сети, имеющие скорость передачи данных от 384 Кб/с до 42 Мб/сек. • Широкий частотный диапазон и пакетная коммутация 3G устройств сделали возможным использовать ранее недоступные для пользователей приложения. Некоторые из них:  Мобильное телевидение. Провайдер вещает телевизионный сигнал непосредственно на телефон абонента (если тот способен его принять).  Видео. Провайдер загружает видео на телефон абонента.  Видео-конференция.  Телемедицина. Медицинский работник следит за состоянием здоровья абонента. Вы можете получить от него совет, также он может вызвать скорую помощь, если это необходимо.  Местонахождение объектов. Провайдер отправляет информацию о погоде конкретно в регионе абонента или о пробках. Можно воспользоваться картой и найти интересующие вас объекты.

    Этот сигнал возможно усилить, только установив репитер 3G.

    Рынок M2M сегодня

    Под рынком M2M в настоящее время понимается преимущественно рынок беспроводных мобильных устройств, оснащённых SIM-картами и предназначенных для передачи телеметрической информации без участия человека.

    Согласно оценкам компании Berg Insight, в 2014 г. число беспроводных M2M-подключений в мире превысило 200 млн. Цифра весьма скромная по сравнению с общим количеством подключенных абонентских устройств. Российский рынок беспроводных M2M-подключений насчитывает, по данным МТС, около 6 млн SIM-карт, из которых более 60% установлено на транспортных средствах для контроля их местоположения, учета расхода топлива, реализации и т. п.

    Ключевыми проблемами, сдерживающими продвижение услуг М2М на рынке России, бизнес-потребители считают их высокую стоимость, низкую скорость соединения и нестабильность соединения. Эти факторы в качестве определяющих при принятии решения о подключении к услуге называют соответственно 59, 45 и 20% пользователей услуг М2М (данные J’son & Partners Consulting).

    M2M и IoT — в чем разница?

    Все прогнозы о «взрывном» росте количества M2M-подключений основываются на новой концепции M2M — «Интернете вещей» (Internet of Things, IoT), являющейся частью более общей концепции «Интернета сервисов» (Internet of Services, IoS). Понятие «M2M-устройство» охватывает как традиционные проприетарные средства телеметрии и телеуправления (к которым можно отнести подавляющее большинство используемых сейчас устройств M2M, включая сетезависимые беспроводные), так и независимые от сетей и приложений устройства IoT. А устройства «Интернета вещей» — это только устройства, имеющие возможность через свободное IP-подключение (на физическом уровне, как правило, Wi-Fi) взаимодействовать с различными системами телеметрии и телеуправления, реализованными как облачные и/или онлайн-сервисы. То есть «Интернет вещей» — это облачные телеметрия и телеуправление.

    Облачные системы способны обеспечить сколь угодно детализированное оптимизационное управление сколь угодно широкой номенклатурой объектов управления, причем не только объектами в целом («умный дом», «умный автомобиль» и т. п.) и их системами (энергоснабжения, освещения, кондиционирования и т. д.), но и отдельными элементами этих систем, вплоть до отдельной лампочки в системе освещения. Эта особенность является причиной большого разброса в прогнозных оценках количества таких устройств: количество «умных лампочек» и других компонентов управляемых объектов действительно может достигать десятков и сотен миллиардов (в некоторых прогнозах — триллионов).

    Мобильные сети 2G в качестве достойной замены «проводам»


    Только с появлением второго поколения сотовых сетей в 90-х годах мобильную связь можно было ставить на одну «полку» с традиционными тогда кабельными решениями. Ее ключевым конкурентным преимуществом перед предшественником стал цифровой способ передачи информации на скорости 9,6 — 14,4 Кбит/с, который не только гарантировал качество голосовых вызовов, но и позволял использовать услугу обмена короткими текстовыми сообщениями — SMS. Она сразу стала невероятно популярной и остается, несмотря на современное засилье мессенджеров, таковой и сегодня. Стандарты-современники — TDMA, CDMA, GSM и PDC.

    Требования IoT-устройств к сетям связи

    Для реализации концепции «Интернета сервисов» необходима унификация всего разнообразия сетей доступа и домашних/локальных сетей на базе стека протоколов IP и переход абонентов от использования проприетарных абонентских устройств, сенсоров и контроллеров к выполненным в идеологии «Интернета вещей» сенсорам и исполнительным устройствам со свободным сетевым доступом к ним. Для оператора связи основные отличия устройств IoT от умных абонентских устройств состоят в потенциально существенно большем количестве первых, на порядки меньшем объеме трафика в расчете на одно устройство, но при этом в более высоких требованиях к качественным характеристикам. В число таких характеристик входят: доступность канала, задержка сигнала в канале, уровень информационной безопасности, необходимая мощность излучения (соответственно, длительность автономной работы устройств). Для телеметрических IoT-устройств больший вес имеют качественные (доступность, безопасность), а не количественные (емкость) характеристики канала. На рисунке 2 показаны области требований различных сервисов к сетям передачи данных. Так, для критичных сервисов телеметрии и телеуправления доступность канала связи с сенсорами и исполнительными устройствами должна достигать 99,999%.

    Медленная и неуверенная передача пакетных данных в 2,5G


    На пороге миллениума существующие мобильные сети обзавелись поддержкой передачи данных на скорости 171,2 Кбит/с, а операторы — возможностью тарифицировать не время использования услуг, а количество потребленной информации. Переходной этап развития сотовой связи качественно отличался от базового возможностью доступа к интернету с помегабайтной оплатой. Полноценным серфинг сети с ее помощью, однако, назвать нельзя, ведь ее стандартами была предусмотрена уж больно медленная и неуверенная передача пакетных данных. На территории многих стран постсоветского пространства сотовые операторы так и не шагнули дальше данного этапа в развитии мобильной связи, поэтому их жители, по большому счету, не могут полноценно использовать интернет вне Wi-Fi сетей со своих смартфонов. 2,5G базируется на стандартах GPRS, EDGE и 1X.

    LTE

    Система LTE (Long Term Evolution, «долговременная эволюция») была разработана для того, чтобы предоставить пользователям доступ к всевозможным сервисам, а также к Интернету посредством протокола IP. Сеть LTE состоит из множества узлов. Все узлы сети принято делить на две категории: узлы, относящиеся к сети радиодоступа (Radio Access), и узлы опорной сети (Core Network). Ключевым элементом, определяющим эффективность любой радиосети, являются алгоритмы и механизмы, используемые для передачи данных между БС и МС. Далее рассматриваются основные характеристики сети LTE, относящиеся к сети радиодоступа.

    Согласно требованиям к системе LTE, при радиусе соты до 5 км должны поддерживаться все параметры спектральной эффективности, пропускной способности и работы с мобильными абонентами. При радиусе соты от 5 до 30 км допускается ухудшение в показателях производительности.

    Для обеспечения двунаправленной передачи данных между БС и МС технологией LTE поддерживается как частотный (FDD), так и временной дуплекс (TDD). Для частотного дуплекса определено 15 парных частотных диапазонов (частоты от 800 МГц до 3,5 ГГц), а для временного — восемь. При этом ширина радиоканала может быть различной. Допустимы следующие значения: 1,4/3/5/10/15/20 МГц.

    В качестве систем множественного доступа в LTE используются OFDMA (Orthogonal Frequency Division Multiple Access) в нисходящем канале и SC-FDMA (Single Carrier Frequency Division Multiple Access) в восходящем. При использовании технологии OFDMA весь имеющийся спектр разбивается на поднесущие, ортогональные друг другу. В зависимости от используемой ширины канала общее количество поднесущих может быть 72, 180, 300, 600, 900 или 1200. Каждая из поднесущих может иметь свой вид модуляции. Могут использоваться следующие модуляции: QPSK, 16QAM, 64QAM.

    Множественный доступ организуется за счет того, что одна часть поднесущих выделяется одному пользователю в кадре, другая часть — второму и т. д. Стандартом LTE (а именно, 3GPP TS 36.306) всего определяется 15 (версия документа от 27.03.2015) категорий мобильных устройств. Категория мобильного устройства задает максимальные скорости передачи в DL и UL. В таблице 2 приводятся значения скоростей передачи, поддерживаемые конфигурации MIMO (Multiple Input Multiple Output) и типы модуляций для каждой категории.

    Т а б л и ц а 2 . Значения скоростей передачи, поддерживаемые конфигурации MIMO и типы модуляции

    UE категорияDownlinkUplink
    Максимальное количество бит в TTIМаксимальное количество бит в транспортном блокеMIMOПоддержка 64QAMМаксимальное количество бит в транспортном блоке
    0100010001000
    110296102965160
    251024510242×225456
    3102048753762×251024
    4150752753762×251024
    52995521497762×2, 4×4+75376
    6301504149776 (4×4) 75376 (2×2)2×2, 4×451024
    7301504149776 (4×4) 75376 (2×2)2×2, 4×4102048
    829985602998568×8+1497760
    9452256149776 (4×4) 75376 (2×2)2×2, 4×451024
    10452256149776 (4×4) 75376 (2×2)2×2, 4×4102048
    11603008149776 (4×4,64QAM)195816 (4×4, 256QAM) 75376 (2×2, 64QAM)97896 (2×2, 256QAM)2×2, 4×451024
    12603008149776 (4×4,64QAM)195816 (4×4, 256QAM) 75376 (2×2, 64QAM)97896 (2×2, 256QAM)2×2, 4×4102048
    13391632195816 (4×4) 97896 (2×2)2×2, 4×4+150752
    1439165603916568×8+1497760
    15749856–798800149776 (4×4,64QAM)195816 (4×4, 256QAM) 75376 (2×2, 64QAM)97896 (2×2, 256QAM)2×2, 4×4n/an/a
    16978960–1051360149776 (4×4,64QAM)195816 (4×4, 256QAM) 97896 (2×2, 256QAM)2×2, 4×4n/an/a

    По приведенным выше значениям можно примерно рассчитать максимальную скорость передачи. В нисходящем канале значения максимальной скорости передачи в зависимости от категории мобильной станции будут следующие: 10, 50, 100, 150, 300, 300, 300 Мбит/с и 3 Гбит/с. Для восходящего канала получаются следующие значения: 5, 25, 50, 50, 75, 50, 100 Мбит/с и 1,5 Гбит/с. На рис. 5 приведено распределение скоростей «вниз» и «вверх» по категориям LTE.

    Мобильные устройства всех категорий поддерживают работу с каналом шириной до 20 МГц (кроме категории 0) и модуляцию 64QAM (кроме категории 0) в нисходящем канале. Категория 0 вводится специально для MTC (Machine Type Communications). Одно из основных требований в рамках MTC — очень низкое энергопотребление. Отсюда и жесткие ограничения на поддерживаемый набор функций на физическом уровне и размер буфера.

    Основной плюс технологии OFDMA заключается в том, что она позволяет бороться при приеме сигнала с негативными эффектами, вызванными многолучевым распространением. Однако этой технологии также присущи и некоторые недостатки. Основные из них состоят в том, что данная технология очень чувствительна к синхронизации по частоте. Сгенерированный OFDMA-сигнал обладает высоким PAPR (Peak to Average Ratio). Это, в свою очередь, сказывается на том, что используемый усилитель сигнала будет работать в нелинейных участках своей характеристики. Поэтому его эффективность будет низкой, что достаточно критично для устройств с ограниченным запасом энергии (мобильных терминалов). Из-за этого в восходящем канале LTE используется другая технология множественного доступа, а именно SC-FDMA. Отличие SC-FDMA от OFDMA заключается в том, что в SC-FDMA используется дополнительная обработка сигнала для снижения PAPR. В SC-FDMA в качестве такой дополнительной обработки сигнала используется преобразование Фурье. В восходящем канале могут использоваться различные виды модуляции: QPSK, 16QAM, 64QAM.

    Стандарт LTE также поддерживает технологию передачи MIMO, которая позволяет существенно увеличить пиковую скорость передачи данных и значение спектральной эффективности. Суть технологии MIMO заключается в том, что при передаче и приеме данных используется несколько антенн с каждой стороны. Разные антенны могут передавать одни и те же данные, в этом случае повышается надежность передачи данных, но не скорость передачи. Также разные антенны могут передавать различные потоки данных, при этом увеличивается скорость передачи данных. Максимально в нисходящем канале технологией LTE поддерживается схема 44. Это означает, что на передающей и приемной стороне используется по четыре антенны. В этом случае скорость передачи данных может быть увеличена до четырех раз (в действительности чуть меньше из-за увеличения количества пилотных сигналов).

    При использовании технологии MIMO и ширине канала 20 МГц максимальная скорость передачи данных может достигать 300 Мбит/с в нисходящем канале и 170 Мбит/с в восходящем.

    В требованиях к LTE значения спектральной эффективности указаны как 5 бит/с/Гц для нисходящего канала и 2,5 бит/с/Гц для восходящего канала (что соответствует скоростям передачи данных в 100 Мбит/с и 50 Мбит/с). При этом высокие показатели производительности должны поддерживаться для мобильных пользователей, перемещающихся со скоростью до 120 км/ч.

    LTE Cat.0, LTE Cat.1

    Одно из основных требований к устройству М2М/IoT — низкое энергопотребление. Для реализации этого требования в стандарт LTE были включены требования к абонентским устройствам Cat.0, Cat.1 и LTE NB (Narrow Band).

    Теоретически устройства IoT смогут работать в сетях LTE с поддержкой Cat.1 не менее 10 лет от одной батареи. Многие IoT-устройства будут работать без внешней подачи энергии, то есть продолжительность их функционирования станет определяться именно показателями энергопотребления, массовая замена батареек не предусматривается. Экономию энергии обеспечивает поддержка функционала Power Saving Mode. Устройство с таким функционалом находится, в основном, в спящем режиме и включается только тогда, когда это необходимо. Как ожидается, поддержка Power Saving Mode на стороне сетевого оборудования LTE будет стандартизована в 2021 г. В ноябре 2015 г. фирма Ericsson показала работу устройства Cat.1 на базе чипсета Altair FourGee-1160 на сети AT&T с использованием релиза 16A. Это очень перспективное направление, особенно учитывая то, что сети LTE возьмут на себя функции работы с многочисленными устройствами M2M, которые сейчас в большинстве своем работают через сети GSM.

    5G — недалекое будущее развития мобильной связи


    Прогресс, что неудивительно, не стоит на месте, поэтому несколько передовых в техническом плане стран, среди которых США и Япония, занимаются активной разработкой сотовых сетей нового поколения. Первые пробные запуски должны начаться уже в ближайшие пару-тройку лет, а коммерческий — в 20-х годах. Очевидным нововведением новых стандартов должен стать очередной прирост скорости передачи данных, однако другие интересные особенности и возможности на данный момент держаться под секретом.
    Мобильное направление современной пользовательской электроники сегодня является наиболее актуальным, поэтому стремительное развитие сотовых сетей в прошлом, настоящем и будущем закономерно.

    NB-LTE

    NB-LTE — узкополосный (Narrow Band) LTE для IoT-приложений — еще одно подмножество стандарта LTE, которое планируется закрепить в 3GPP LTE Rel.13 в начале 2021 г. NB-LTE предназначен для разнообразных IoT-применений, которые отличает низкое потребление трафика. NB-LTE, как ожидается, будут отличать еще более скромные потребности по части ресурсов, нежели LTE Cat.1, Cat.0 и LTE MTC. Ожидаемая спецификация: 180 кГц — полоса частот для UL и DL (для LTE MTC — 1 МГц), в DL используется 15 кГц частот и модуляция OFDMA, 3,75 кГц — защитный интервал, в UL задействован FDMA или GMSK, как опция может быть SC-FDMA. Ожидается улучшенное покрытие в помещениях, возможность обслужить множество устройств с низким потреблением трафика, особенно таких, которые не слишком чувствительны к задержкам. Узкополосность позволяет изготавливать недорогие чипсеты и устройства с очень низким энергопотреблением, что должно обеспечить длительную работу устройств от батарей питания (типа большого серебряно-цинкового элемента или щелочного элемента AAA), вплоть до года или более. Стандарт можно будет внедрить на обычных сетях LTE за счет выделения нескольких ресурсных блоков или за счет использования блоков в защитном диапазоне LTE. В принципе возможно и изолированное развертывание сети NB-LTE в выделенном для этого участке спектра. Стандарту прочат широкое использование, так как, в отличие от различных аналогов, он поддерживается 3GPP. Есть, правда, опасение, что к моменту выхода конечной версии Rel.13 с NB-LTE не успеют, тогда он будет стандартизован в Rel.14. А вот LTE MTC войдет в Rel.13 почти со 100%-й вероятностью. Этот стандарт обеспечивает энергопотребление меньше, нежели Cat.0, а покрытие лучше, чем у Cat.0. Он проигрывает NB-LTE, но зато практически готов к включению в стандарт.

    LTE-A (LTE Advanced)

    Под LTE Advanced (LTE-A) на сегодня принято понимать набор технологий, стандартизованных в документе 3GPP Rel.10 и последующих релизах. Ключевые функции — агрегация частот (CA), усовершенствованные техники работы с антеннами, доработанные MIMO для увеличения емкости и релейной передачи. Улучшения также включают оптимизацию работы гетерогенных сетей (на предмет наращивания емкости и улучшения управления интерференцией), SRVCC, eMBMS. В Rel.11 появилась также поддержка CoMP, eICIC. LTE-A на сегодня — основной тренд отрасли, практически каждый третий оператор сети LTE в мире инвестирует в испытания или занимается развертыванием поддержки данной технологии.

    LTE-A, как ожидается, поможет справиться с активным ростом трафика беспроводных данных, а также будет способствовать повышению средних скоростей в беспроводных сотовых сетях. Это означает также лучшее покрытие, бОльшую стабильность и быстроту сетей. Это означает комплексное улучшение параметров сети передачи данных, а не только увеличение скорости скачивания данных. LTE-A обеспечит для операторов возможность нарастить емкость их сетей, улучшить качество пользовательского опыта, улучшить возможности распределения сетевых ресурсов. Для этого используется целый набор различных технологий, некоторые из которых не являются новыми, но ранее не использовались в единой системе связи.

    Ожидается, что LTE-A позволит передавать данные с пиковыми скоростями до 1 Гбит/с по сравнению с 300 Мбит/с для LTE. Агрегация частот обеспечивает возможность предоставлять абонентам более высокие скорости, позволяя загружать данные с использованием одновременно нескольких полос частот. Абонентское устройство в режиме CA принимает и комбинирует одновременно несколько сигналов, например из двух несущих частот или даже из разных диапазонов частот. Комбинировать можно до пяти несущих шириной по 20 МГц каждая, собирая широкий канал для перекачки данных с полосой до 100 МГц. MIMO, как технология множественного ввода/вывода, может увеличивать суммарную скорость передачи данных за счет одновременной передачи сигнала с разделением потока данных между двумя или большим числом антенн. Это позволяет повысить спектральную эффективность передачи информации. Более того, возможно динамическое создание ориентированной на конкретное абонентское устройство синтезированной направленной антенны.

    Relay Nodes — способ быстро нарастить покрытие сети в местности, где нет мощных каналов передачи цифровых данных. В этом случае радиоподсистема LTE-A сама выполняет функцию беспроводной опорной сети. Это также возможность размещать маломощные БС на краях соты, чтобы улучшить там покрытие и емкость.

    Несколько причин, почему 2G превосходит 1G:

    • Более слабые радио сигналы экономят энергию батареи, таким образом телефонам хватает зарядки на гораздо большее время, и благодаря этому размер батареи уменьшился. • Цифровое кодирование голоса делало возможным проверку цифровых ошибок, которая позволяла увеличить качество звука за счёт увеличения динамического диапазона и снижения уровня шума. • Снижение выходной мощности телефонов помогло уладить вопросы о вреде здоровью. • Переход к цифровой системе способствовал внедрению цифровых сервисов данных, как SMS и e-mail • Масштабное падение уровня мошенничества. С аналоговыми системами(1G) было возможно иметь более двух телефонов-клонов, у которых был одинаковый номер (с помощью телефона-клона можно завладеть счётом абонента). • Повышение конфиденциальности. Мало где звучит, что цифровые сотовые звонки намного сложнее подслушать с помощью радио-сканера, однако это одно из ключевых преимуществ 2G. 2G телефоны намного более конфиденциальны, чем 1G, которые не имеют защиты от подслушивания.

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]