Общие положения
Слово «орбита» в переводе с латинского означает «дорога», «колея». Этим термином великий немецкий ученый Иоганн Кеплер в начале XVII в. назвал траекторию движения небесных тел в космическом пространстве. Им были открыты и сформулированы основные законы их движения. После запуска в октябре 1957 г. первого в мире советского спутника Земли «Спутник-1» такие понятия, как «искусственное небесное тело» или «искусственный спутник Земли» стали реальностью. Их движение подчиняется тем же эмпирическим законам Кеплера.
Первый закон Кеплера гласит, что траектория движения планет является эллипсом, в одном из фокусов которого находится Солнце. Частный случай движения планеты − движение по круговой орбите (при этом эксцентриситет эллипса, т. е. отношение расстояния между фокусами к большой оси, будет равен нулю или мало отличаться от нуля). В соответствии с первым законом Кеплера один из фокусов эллипса, по которому движется искусственное небесное тело в поле тяготения Земли, должен находиться в центре Земли. Отсюда следует, что искусственный спутник Земли не может двигаться вдоль ее параллели, за исключением экваториальной плоскости. Второй фокус будет расположен на таком же расстоянии от апогея орбиты спутника, на каком центр Земли находится от ее перигея (рис. 1).
Рис. 1. Геометрическая иллюстрация к первому закону Кеплера, где: a – большая полуось эллипса; b – малая полуось эллипса; O (центр Земли) и O` – фокусы; c – расстояние между фокусами
Согласно второму закону Кеплера радиус-вектор планеты в равные промежутки времени описывает равные площади (рис. 2). Из второго закона Кеплера вытекает, что планета движется вокруг Солнца неравномерно, имея около перигея более высокую линейную скорость, чем около апогея.
Рис. 2. Геометрическая иллюстрация ко второму закону Кеплера, где: O – центр Земли; Rc – радиус-вектор спутника
Третий закон гласит: квадраты времени обращения планеты вокруг Солнца пропорциональны кубу большой полуоси эллипса a (см. рис. 1):
где: Tc – период обращения планеты на орбите; a – величина большой полуоси эллипса;
k – постоянная.
То есть чем меньше высота орбиты, тем меньше период обращения.
В общем случае любая спутниковая орбита описывается рядом параметров, из которых основными являются:
- геометрическая форма орбиты;
- высота орбиты спутника, определяемая как наименьшее расстояние до земной поверхности в километрах;
- наклонение орбиты – угол между плоскостью экватора и плоскостью орбиты.
По геометрической форме орбиты делятся на круговые и эллиптические и отличаются по наклонению к плоскости экватора. При совпадении с плоскостью экватора они называются экваториальными. Орбиты, перпендикулярные к плоскости экватора, называются полярными. По высоте орбиты над земной поверхностью (Н) они условно делятся на низкие (Н ≤ 2000 км), средние (Н = 2000…20000 км) и высокие (Н ≥ 20000 км). Особое место среди разнообразных орбит занимают высокоэллиптические орбиты с большим отношением между высотами апогея и перигея.
Точку пересечения с поверхностью Земли радиуса-вектора, соединяющего спутник с центром Земли, называют подспутниковой точкой. В этой точке наблюдатель видит спутник в зените. При отклонении от подспутниковой точки увеличивается расстояние от наблюдателя до спутника, а отклонение от зенита можно описать двумя угловыми величинами: азимутом и углом места [1].
Идея использования искусственных аппаратов
Само понятие геостационарной орбиты инициировано русским изобретателем К. Э. Циолковским. В своих работах он предлагал заселить космос с помощью орбитальных станций. Зарубежные ученые также описывали работы космических полей, например, Г. Оберт. Человеком, который развил концепцию использования орбиты для связи, является Артур Кларк. Он в 1945 году поместил статью в журнале «Wireless World», где описал преимущества работы геостационарного поля. За активный труд в данной области в честь ученого орбита получила свое второе название — «пояс Кларка». Над проблемой осуществления качественной связи думали многие теоретики. Так, Герман Поточник в 1928 году высказал мысль о том, как можно применять геостационарные спутники.
Геостационарная орбита
Круговая орбита высотой 35 880 км, лежащая в экваториальной плоскости Земли, называется геостационарной орбитой (ГСО). Спутник при движении по этой орбите в восточном направлении совершает вокруг Земли оборот за одни звездные сутки (23 часа 56 минут 4 секунды) и, следовательно, будет постоянно находиться над определенной точкой на экваторе Земли (подспутниковая точка). В этом и заключается уникальность геостационарной орбиты.
Зона видимости с геостационарного спутника достаточно большая и занимает около одной трети земной поверхности (рис. 3). Однако приполярные зоны остаются вне зоны видимости. Видимость спутника с Земли определяется не только широтой, но и долготой.
Рис. 3. Зона видимости геостационарного спутника
Искусственные спутники Земли, которые находятся на геостационарной орбите два раза в год в периоды времени, близкие к осеннему и весеннему равноденствию, попадают в тень Земли. Время каждого затенения не превышает 1 часа 10 минут.
Спутниковая связь с использованием космических аппаратов (КА) на геостационарной орбите является достаточно универсальным средством передачи и позволяет реализовать широкий перечень услуг в области междугородной и международной телефонной и факсимильной связи, передачи данных, распределения программ звукового и телевизионного вещания, передачи газетных полос, непосредственного звукового и телевизионного вещания, выхода в сеть Интернет, предоставления доступа в службы мультимедиа. Спутниковые геостационарные системы используются также для организации VSAT-сетей различной конфигурации, для резервирования наземных каналов связи, сбора мониторинговой информации и т. д.
Международно-правовой статус геостационарной орбиты провозглашает и закрепляет участок околоземного космического пространства, составляющего геостационарную орбиту, в качестве «достояния всего человечества» и призван обеспечить ее эффективное и безопасное использование, а также доступ к ней всех государств на справедливой и рациональной основе. Значительный вклад в решение проблем выработки эффективного международно-правового статуса ГСО вносят Организация Объединенных Наций (ООН), ее органы (Конференции ООН по исследованию и использованию космического пространства в мирных целях, Комитет ООН по космосу и его Научно-технический и Юридический подкомитеты) и специализированные учреждения Международного союза электросвязи (МСЭ). Детальные технические правила и процедуры использования радиочастотного спектра и геостационарной орбиты содержатся в Регламенте радиосвязи МСЭ [2, 3].
В настоящее время на ГСО зафиксировано более 500 объектов искусственного происхождения (спутники, ступени ракет, отдельные фрагменты). Из них около половины являются действующими спутниками связи и вещания, принадлежащими как международным организациям, так и отдельным государствам или частным компаниям.
Первый введенный в эксплуатацию советский геостационарный спутник «Радуга» («Стационар-1») в интересах Министерства обороны РФ был запущен в подспутниковую точку 85о в. д. в декабре 1975 г. с помощью РН «Протон-К».
Российская группировка гражданских спутников связи в настоящее время состоит из 15 действующих космических аппаратов, принадлежащих ФГУП «Космическая связь» и ОАО «Газпром – космические системы».
Законы Кеплера действительны при движении планет или спутников в поле тяготения, в котором отсутствуют возмущающие факторы. Орбиты искусственных спутников Земли в силу малости их масс могут изменяться под действием внешних возмущающих сил. Отклонение движения геостационарных спутников Земли от заданной орбиты вызывается несферичностью Земли, притяжением Луны и Солнца, давлением солнечного ветра и т. д. В результате этого геостационарный спутник постепенно смещается вдоль орбиты в сторону четырех точек стабильного состояния (75,3° в. д., 104,8° з. д., 166,3° в. д. и 14,7° з. д.), а также увеличивается наклонение его орбиты к экватору со скоростью 0,85° в год.
В соответствии с действующими требованиями спутники при длительной эксплуатации (до 15−16 лет) должны удерживаться на геостационарной орбите с точностью ±0,1º. Отсюда следует необходимость периодической коррекции положения спутников на орбите. Коррекция осуществляется по направлению север−юг для сохранения заданного наклонения и по направлению восток−запад для удержания спутника в его назначенном положении в пределах геостационарного пояса.
Для поддержания заданного положения спутника на геостационарной орбите на платформе КА устанавливаются специальные корректирующие двигатели, а также запас топлива для них («рабочее тело»). Масса рабочего тела может составлять сотни килограмм. Запас топлива во многих случаях определяет срок активного существования КА. Корректирующие двигатели могут быть химическими, электроракетными или плазменными. Включение двигателей осуществляется периодически один раз в несколько суток. Эти же двигатели могут быть использованы для перемещения при необходимости спутника в другую точку стояния на ГСО.
На геостационарных спутниках предусматривается запас топлива для перевода выработавшего ресурс либо подлежащего замене КА на орбиту захоронения. Орбита захоронения находится выше геостационарной орбиты на 200−300 км.
К недостаткам систем связи с использованием геостационарных спутников следует отнести:
- большое время распространения сигнала по линии «Земля − спутник – Земля» − 0,24 с;
- невозможность связи с арктическими районами Земли;
- повышенные требования к энергетике линий связи «Земля − спутник» и «спутник − Земля» из-за большой протяженности трассы;
- ограниченные потенциальные возможности по количеству размещаемых на орбите спутников.
Скрытая угроза
Несколько гигантов информационной индустрии выразили свое желание «оказаться в космосе». Facebook пошел пока традиционным путем и разворачивает сеть в Африке на основе геостационарной емкости Ка-диапазона. Google фонтанирует планами, в которых сочетаются и спутники, и беспилотные аппараты, и воздушные шары. По инициативе компании проводятся, безусловно, интересные эксперименты (с теми же дронами на солнечных батареях), но о коммерческой реализации или хотя бы прообразе бизнес-модели применения пока никто не заговаривает. И даже Apple в апреле наняла на работу специалистов по спутниковым коммуникациям (один из них, кстати — бывший сотрудник Google) и начала предварительные переговоры с Boeing на предмет использования проектируемой компанией низкоорбитальной системы, работающей в V‑диапазоне (40–75 ГГц).
Немалую роль «низколетам» отводят в грядущем буме IoT. Эксперты прогнозируют к 2025 году наличие около 100 млрд устройств в этой области, и спутниковые операторы (как новые, так и существующие) не намерены упускать этот рынок. Здесь основной фокус делается на микро- и даже наноспутники. Типичный проект (из тех, что прошли чуть дальше от стадии задумки) — австралийский стартап Fleet, планирующий в 2021 году запуск 100 наноспутников для IoT. Этой компании недавно удалось получить финансирование в размере $3,7 млн.
Илон Маск продвинулся гораздо дальше своих предшественников и современников. В прошлом году он привлек инвестиции от SoftBank в размере $2,5 млрд, что покрыло более чем половину требуемой для развертывания системы суммы. Уже в начале этого года при участии все того же банка OneWeb пытался провести слияние с Intelsat. Синергия двух таких различных, но прекрасно дополняющих друг друга технологий могло бы дать дать просто убийственный конгломерат, конкурировать с которым было бы крайне непросто. Но акционерам Intelsat не понравились условия слияния, и оно не состоялось. При этом оба оператора уверены в положительном эффекте от возможного слияния.
Низкие орбиты
В связи с перегруженностью геостационарной орбиты в последние два десятилетия большое внимание уделяется многоспутниковым системам связи с расположением КА на низких орбитах. Космический сегмент в этом случае строится из совокупности спутников, образующих орбитальную группировку. Спутники могут находиться на круговых или эллиптических орбитах, равномерно расположенных над земной поверхностью так, чтобы интересующие географические точки на Земле имели радиовидимость по крайней мере с одним КА. Для таких спутниковых систем с круговыми орбитами высота орбиты обычно выбирается в пределах от 600 до 1500 км. Это обусловлено тем, что при меньших высотах ощущается действие атмосферы, что приводит к торможению движения спутника и постепенному снижению высоты его орбиты.
На высотах более 1500 км располагается внутренний радиационный пояс Земли (пояс Ван Аллена), который делится на внутреннюю и внешнюю зоны (рис. 4). В этих зонах магнитное поле Земли удерживает заряженные частицы (протоны, электроны, α-частицы) с высокой кинетической энергией от десятков кэВ до сотен МэВ. Во внутренней зоне на высоте примерно 3000 км находится максимум плотности потока протонов высокой энергии (20…800 МэВ).
Рис. 4. Расположение радиационных поясов Земли
Промежуток между внутренней и внешней зонами находится в пределах от 5000 до 15 000 км. Нахождение аппаратуры, особенно полупроводниковой, в радиационных поясах Ван Аллена приводит к возникновению дефектов в кристаллах и в конечном счете к отказам в работе аппаратуры. Поэтому при выборе высоты для низкоорбитальных спутников должны быть исключены высоты длительного нахождения спутников в радиационных поясах Земли.
Преимуществом низкоорбитальных систем является возможность использования компактных и относительно дешевых абонентских терминалов благодаря меньшему расстоянию между ретранслятором ИСЗ и земными станциями по сравнению с геостационарными спутниковыми системами, а также создания глобальной системы и связи с абонентами, находящимися в любой точке земной поверхности. Кроме того, для запуска ИСЗ требуются относительно небольшие ракеты-носители (РН), менее критичен выбор место старта РН.
Низкоорбитальные системы с передачей сигналов с задержкой (телеграф, электронная почта) применяются уже много лет, в основном для специальных целей. Для телефонной связи и передачи данных в реальном режиме времени такие системы непригодны. Зона видимости низколетящего спутника в виде пятна непрерывно перемещается по земной поверхности и доступна абоненту в зависимости от размера этого пятна в течение 10−15 минут. Для обеспечения непрерывности связи требуются и непрерывная смена зон видимости от следующих друг за другом спутников, и соответствующее переключение линии связи между двумя абонентами. Поэтому спутников должно быть достаточно много. На низких орбитах их число обычно должно составлять 48 и более [4].
Для работы ЗС, расположенных в произвольной точке Земли, необходимо использование наклонных, а не экваториальных орбит. Наилучший вариант для глобального обслуживания − полярные орбиты (угол наклонения 90о). Использование нескольких полярных орбитальных плоскостей сопряжено с опасностью столкновения спутников. Поэтому чаще задействуются околополярные орбиты с наклонением 80…86о. Выбор угла наклонения обусловлен и географическим нахождением стартового комплекса ракеты-носителя, с помощью которого осуществляется запуск КА. Любой запуск РН связан с падением на Землю отработавших ступеней. Допустимая территория падения этих ступеней строго оговаривается для любого космодрома, что и определяет возможные углы наклонения. Срок активного существования низкоорбитальных спутников обычно меньше, чем у геостационарных или средневысотных, вследствие того, что у этих спутников время нахождения в тени Земли значительно больше, а это приводит к сложностям обеспечения электропитанием на борту (большое количество циклов зарядки-разрядки аккумуляторов). Время затенения составляет примерно половину времени витка. При освещении и затенении КА происходит соответственно разогрев и охлаждение элементов КА до температур +100 и −150 оС. Для сокращения энергопотребления предусматривается возможность перехода на пониженное потребление мощности полезной нагрузкой при прохождении спутником участков поверхности Земли с нулевым или малым трафиком.
В России в марте 2015 г. завершено развертывание глобальной низкоорбитальной спутниковой системы связи «Гонец», состоящей из 12 КА и предназначенной для организации передачи информации по принципу «электронная почта». Орбитальная группировка состоит из четырех плоскостей по три аппарата в каждой плоскости. Круговая орбита имеет высоту 1500 км и наклонение 82,5о.
В настоящее время в мире развернуты две низкоорбитальные системы телефонной связи – «Иридиум» и «Глобалстар» [5]. Обе системы имеют свои сегменты в Российской Федерации.
Орбитальная группировка система «Иридиум» насчитывает 66 спутников, обращающихся вокруг Земли по 11 орбитам на высоте примерно 780 км. Это единственная система гражданской спутниковой телефонной связи, покрывающая 100% поверхности Земли, включая полярные области. Отличительной особенностью системы является наличие межспутниковой связи.
Космический сегмент системы «Глобалстар», обеспечивающий телефонную связь, состоит из 48 спутников на высоте 1414 км с наклонением 52°. На каждой из восьми орбитальных плоскостей располагаются 6 ИСЗ. Из-за малого угла наклонения зона обслуживания системы находится в пределах 0−75° с. и ю. ш. В России расположены три станции сопряжения системы «Глобалстар» с сетью общего пользования страны.
Основы спутниковой связи – спутники
Спутники являются ретрансляционными станциями в космосе для передачи голоса, видео и передачи данных. Они идеально подходят для удовлетворения глобальных коммуникационных требований военных, правительственных и коммерческих организаций. Поскольку предоставляют экономичные, масштабируемые и высоконадежные услуги передачи в обширных географических районах.
Передача через спутниковые системы связи может обойти существующую наземную сотовую инфраструктуру вышек, которая часто ограничена и ненадёжна во многих частях мира.
Высокоэллиптические орбиты
Большое практическое значение, особенно в нашей стране, в свое время приобрело использование высокоэллиптической орбиты в системах спутниковой связи со спутниками «Молния». Эта орбита (также под названием «Молния») характеризуется большим отношением высоты апогея (40 250 км) к высоте перигея (500 км). При нахождении апогея в Северном полушарии создается обширная зона видимости территории России, включая приполярные районы, в течение не менее 8 часов. Период обращения на такой орбите составляет 12 часов. С помощью трех-четырех спутников на таких высокоэллиптических орбитах возможна организация круглосуточной связи практически между любыми пунктами российской территории. Как правило, группировка системы с использованием высокоорбитальной орбиты «Молния» состоит из четырех КА, сдвинутых по времени на 6 часов. Каждый спутник в течение суток дважды проходит апогейную точку: первый раз над восточным полушарием (основной виток), второй − над западным полушарием (сопряженный виток) [6].
К недостаткам спутниковой связи на высокоэллиптических орбитах следует отнести необходимость построения наземных станций со следящими антеннами. В этих системах также сказывается эффект Доплера, приводящий к изменению частоты принятых колебаний в зависимости от скорости изменения расстояния между спутником и наземной станцией.
Запуск первого высокоэллиптического спутника «Молния-1» в Советском Союзе был осуществлен 23 апреля 1965 г. в целях обеспечения дальней телефонной и телевизионной связи между Москвой и Дальним Востоком.
В ряде проектов рассматривается высокоэллиптическая орбита типа «Тундра», которая представляет собой высокоэллиптическую орбиту с 24-часовым периодом обращения. Эксцентриситет такой орбиты значительно меньше, чем орбиты типа «Молния», что приближает ее к круговой (см. таблицу). В частности, такая орбита выбрана для единственной в западном мире гражданской системы с использованием высокоэллиптической орбиты «Сириус».
Таблица. Основные характеристики орбит «Молния» и «Тундра»
Орбитальные элементы | Тип орбиты | |
Молния | Тундра | |
Период, с | 43 063 | 86 164 |
Большая полуось, км | 26 554 | 42 184 |
Наклонение,° | 63,4 | 63,4 |
Аргумент перигея, ° | 270 | 270 |
Высота перигея, км | 1000 | 21 029 |
Высота апогея, км | 39 352 | 50 543 |
Эксцентриситет | 0,722 | 0,35 |
Продолжительность сеанса связи над обслуживаемой территорией в течение суток, ч | 8 | 8 |
Минимальное количество спутников для круглосуточного обслуживания | 3 | 3 |
Пересечение поясов с повышенной радиацией | 4 раза в сутки | Не пересекаются |
Видимость территории России из апогея (середина сеанса) | Полная | Полная |
Видимость территории России из апогея (начало и окончание сеанса) | Неполная | Полная |
Благодаря длительному пребыванию КА в апогее высокоэллиптические орбиты типа «Молния» и «Тундра» иногда называют квазигеостационарными. Возможно построение аналогичных орбитальных группировок со значительно меньшим значением апогея с периодом обращения 4, 6 или 8 часов, при этом, естественно, требуется большее количество КА для обеспечения постоянного временнóго покрытия.
Различное построение эллиптических орбитальных группировок позволяет решить главный вопрос спутниковой связи – существенно повысить пропускную способность «космоса» и обеспечить равные условия доступа к спутниковой связи приполярных районов Земли. На сегодняшний день, как показывают теоретические исследования и многолетняя практика космической связи, орбита типа «Молния» обладает наибольшим количеством положительных качеств.
В настоящее время в России на рабочих орбитах находится группировка из четырех КА «Меридиан», которая имеет двойное назначение (рис. 5). К гражданским задачам относятся организация спутниковой связи морских судов и самолетов в районе Северного морского пути с береговыми станциями и создание сети связи для северных районов Сибири и Дальнего Востока.
Рис. 5. Наземная трасса КА «Меридиан» (https://ru.wikipedia.org)
Несмотря на то что нашей стране принадлежит приоритет по практическому использованию высокоэллиптической орбиты, дальнейшее продолжение работ по более широкому освоению этого типа орбиты затормозилось. Предусмотренное Федеральной космической программой на 2006−2015 гг. развертывание системы непосредственного спутникового радиовещания с использованием высокоэллиптических КА типа «Экспресс-РВ» не реализовано. Очередной ориентировочный срок запуска высокоэллиптических спутников сугубо гражданского назначения − 2020−2021 гг.
Проект российской спутниковой системы связи «Полярная звезда» с КА, расположенными на высокоэллиптических орбитах, которая предназначена для подвижной и фиксированной службы связи правительственных и государственных органов, населения и транспорта по всей территории России, включая северные и восточные районы, разрабатываемый ОАО «Газпром – космические системы», также не очень продвигается. Скорее всего, это связано с низкой экономической эффективностью подобных систем.
Типы спутников спутниковой связи
Коммерческие основы спутниковой связи подразделяются на три основные категории услуг:
Фиксированные спутниковые службы (ФСС, FSS): используют наземное оборудование в установленных местах для приёма и передачи спутниковых сигналов. Спутники FSS поддерживают большинство наших внутренних и международных услуг, для от международных интернет-соединения до частных деловых сетей.
Подвижные спутниковые службы (ПСС, MSS): используют различные переносные приёмные и передающие устройства для предоставления услуг связи сухопутным подвижным, морским и авиационным пользователям.
Вещательные спутниковые службы (ВСС, FSS): предлагают высокую мощность передачи для приёма с использованием очень небольшого наземного оборудования. FSS используется для телевидения и широкополосных приложений, таких как DIRECTV.
Переходные орбиты
При описании процессов запуска спутников пользуются такими понятиями, как низкая опорная орбита или низкая околоземная орбита (НОО), переходная орбита (ПО), геопереходная орбита (ГПО).
Низкая околоземная орбита – это орбита космического аппарата около Земли (высота − примерно 200 км). Ее называют опорной, если предполагается увеличение ее высоты или изменение наклонения. Для движения по круговой или эллиптической опорной орбите аппарат должен двигаться с первой космической скоростью.
Переходная орбита − путь движения спутника с одной орбиты на другую. Геопереходной орбитой называется орбита, являющаяся переходной между низкой опорной орбитой и геостационарной орбитой. Движение спутников по переходным орбитам совершается под действием ракетной двигательной установки.
Частоты спутниковой связи
Коммерческие спутниковые службы в основном используют три полосы радиочастот:
С-диапазон: обеспечивает более низкую мощность передачи в широких географических зонах. Как правило, требует больше наземного оборудования для приёма.
Ku-диапазон: предлагает более высокую мощность передачи в меньших географических областях и может быть получен с меньшим наземным оборудованием.
L-диапазон: используется для мобильных приложений, таких как морская и авиационная связь, с использованием различного наземного оборудования.
Кроме того, спутниковые операторы в настоящее время разрабатывают приложения в полосах частот Ka-диапазона, которые будут способствовать высокой скорости передачи и значительной передаче информации с использованием небольшого наземного оборудования.
«Точка стояния»
Геостационарные спутники располагаются на высоте 35786 километров над уровнем моря. Такая высота обеспечивает период обращения, который соответствует периоду циркуляции Земли по отношению к звездам. Искусственный аппарат неподвижен, поэтому его местоположение на геостационарной орбите называется «точкой стояния». Зависание обеспечивает постоянную длительную связь, однажды сориентированная антенна всегда будет направлена на нужный спутник.
Двигательные установки
Выбор приспособления определяется индивидуальными техническими особенностями спутника. Например, химический ракетный двигатель имеет вытеснительную подачу топлива и функционирует на долго хранимых высококипящих компонентах (диазотный тетроксид, несимметричный диметилгидразин). Плазменные устройства имеют существенно меньшую тягу, но за счет продолжительной работы, которая измеряется десятками минут для единичного передвижения, способны значительно снизить потребляемое количество топлива на борту. Такой тип двигательной установки используется для маневра перевода спутника в другую орбитальную позицию. Основным ограничивающим фактором срока службы аппарата является запас топлива на геостационарной орбите.
Эффект Допплера
Этот феномен заключается в изменении частот электромагнитных вибраций при взаимном продвижении передатчика и приемника. Явление выражается изменением расстояния во времени, а также движением искусственных аппаратов на орбите. Эффект проявляется как малоустойчивость несущей частоты колебаний спутника, которая прибавляется к аппаратурной нестабильности частоты бортового ретранслятора и земной станции, что осложняет прием сигналов. Эффект Допплера содействует изменению частоты модулирующих вибраций, что невозможно контролировать. В случае, когда на орбите используются спутники связи и непосредственного телевизионного вещания, данное явление практически устраняется, то есть не наблюдается изменений уровня сигналов в точке приема.